Discovery of a gaseous sH hydrate former through phase equilibria and structure identification

One of the way to separate F-gases, which are widely used in semiconductor industries and refrigeration systems while being greenhouse gases, is gas hydrate formation. In this study, $c-C_4F_8$ (GWP: 8,700, lifetime: 3,200 years) was selected to form gas hydrate in presence of CH₄, since $c-C_4F_8$ is too large to form gas hydrate by itself (7.66Å). The three-phase (H-L_W-V) equilibrium curve of $c-C_4F_8$ (5%) + CH₄ (95%) hydrate was moved toward thermodynamically more stable regions compared to that of pure CH4 hydrate, implying the enclathration of $c-C_4F_8$ and thereby possible structural transformation. Then, PXRD and ¹³C NNR spectroscopy revealed that both sI (*Pm3n*) hydrate formed by pure CH₄ and sH (P6/mmm) hydrate formed by $c-C_4F_8$ and CH₄ are coexisting. From these results, it was verified that $c-C_4F_8$ molecule acted as an sH hydrate former. Also, it was confirmed from the equilibrium curve shift depending on $c-C_4F_8$ concentrations ($c-C_4F_8$ 2.0% and 5.0%) that $c-C_4F_8$ is clearly a gaseous guest of sH hydrates. The gaseous sH hydrate former has never been discovered before, and since it is one of F-gases, these results will give a significant impact on gas hydrate application studies.