Modification of SiO₂ powders by using a MDFR

<u>양시우</u>, 강 용[†], 강 호¹ 충남대학교; ¹Evergreen Concrete ENG (kangyong@cnu.ac.kr[†])

Recently, various kinds of attempts have been made to avoid the formation of undesirable components during the formation of main target materials. One of them is the incorporation of target materials to inert media such as SiO₂. However, the SiO₂ should be modified to be applied in a specific target usage and field. To explore the new functions and characteristics of SiO₂ powders, Zn^{2+} were doped into the surface of SiO₂ powders. A MDFR was employed to prepare SiO₂:Zn powders continuously and effectively. Effects of continuous U_C, U_{MB} and C_{Zn} on the structural, optical and electrical properties of SiO₂:Zn powders were investigated. Some parts of Si⁴⁺ in the host materials were substituted by Zn²⁺. The substitution was promoted by increasing in U_{MB}. The substitution of Si⁴⁺ by Zn²⁺ could reduce the bandgap energy between the conduction band of Si⁴⁺ and the valence band of O_{2p}. The increase in U_{MB} led to the reduction of bandgap energy of SiO₂:Zn powders by forming an intrinsic energy level such as acceptor level to the conduction band. SEM analysis showed that the SiO₂:Zn powders were spherical and highly porous with extremely wrinkled and furrowed, with increasing U_{MB} and C_{Zn}.