Controllable Synthesis of MoSe₂ Crystal by Chemical Vapor Deposition

<u>하재환</u>, 오준학[†] 포항공과대학교 (joonhoh@postech.ac.kr[†])

The needs for flexible and transparent properties in electronic materials have been increased to fulfil the properties of future devices. For this reason, many researchers have studied two-dimensional nanomaterials such as graphene and transition metal dichalcogenides (TMDCs). In particular, TMDCs such as MoS_2 and WS_2 have received considerable attention due to their excellent electronic, optical, mechanical properties. These materials have potential for use in nano-electronics, photonics, sensors, and optoelectronics. Many synthetic approaches based on chemical vapor deposition (CVD) have been reported to raise up these 2D materials in large area with high uniformity. However, the preparation of $MoSe_2$ in large area has still been a great challenge. In this research, we have synthesized a high quality $MoSe_2$ focusing on changing the factors of CVD process such as H_2 flow rate, process temperature and time. These results demonstrate the impact of various parameters that affect nucleation density during the synthesis process of $MoSe_2$. This work regarding the synthesis of $MoSe_2$ crystal will find many applications in various flexible, transparent future electronic devices.