Production of linear alpha olefins via Fischer-Tropsch synthesis with Fe-based catalysts

<u>이성우</u>, 김용태[†] 한국화학연구원 (ytkim@krict.re.kr[†])

Fischer–Tropsch synthesis (FTS) has been considered as one of the most feasible methods to convert synthesis gas (CO+ H_2) derived from natural gas, coal and biomass for production of hydrocarbons and oxygenates. The FTS reaction can selectively produce linear alpha olefins (α -olefins), which are commonly used as chemical intermediates for a wide array of applications (i.e., surfactant, performance plastics and elastomers). Significant economic benefits could be achieved by increasing the yield of α -olefins in the FTS process. Optimizing the catalytic properties will lead to maximum the α -olefin selectivity during the FTS process.

In this study, we synthesized several Fe-based catalysts for the production of α -olefin through the FTS reaction. We have tried to adjust iron carbide properties that influence the CO conversion as well as the α -olefin selectivity. The reaction conditions were adjusted to increase the α -olefin selectivity.