> <u>양기혁</u>, Nguyen Thi Phuong Thao, 김문현[†] 대구대학교 (moonkim@daegu.ac.com[†])

W have focused on effective control of the production of N_2O in selective catalytic reduction of NO by NH_3 over a sample of $V_2O_5-WO_3/TiO_2$ whose surface compositions were altered by adding Fe_2O_3 nanoparticles. Because of the existence of a proper amount of nanodispersed Fe_2O_3 on the bare catalyst surface, not only could the extent of NH_3 adsorption on WO_3 surfaces be controlled thereby suppressing the production of N_2O due to the oxidation of NH_3 at high temperatures, but N_2O generated from NH_3 -SCR reaction on the surface of the V_2O_5 species and/or from the NH3 adsorption is also reduced by reaction with NH_3 adsorbed strongly on Fe_2O_3 . XRD measurements represent that Fe_2O_3 species is in the form of nanosized particles and is able to significantly depress N_2O emissions in high-temperature NH_3 -SCR reaction. According to our NH_3 TPD runs, the iron oxide species can also lower the oxidation of NH_3 into N_2 , N_2O , and NO.