NO_x sensing properties of various SnO_2 -based gas sensors

<u>김현지</u>, 이수출¹, 황병욱², 류민영, 김재창[†] 경북대학교; ¹경북대학교 차세대에너지기술연구소; ²한국에너지기술연구원 (kjchang@knu.ac.kr[†])

Fine dust emission that negatively affects the human body has tended to increase every year in Korea. Thus, many researcher studied about detection of $\mathrm{NO_x}$ and $\mathrm{SO_x}$ gases which are major sources of the fine dust. The ppb level detection is one of the key points for detection of the fine dust. In this work, we investigated $\mathrm{NO_x}$ sensing properties of the $\mathrm{SnO_2}$ -based thin-film, thick-film and nanowire structure sensors. The $\mathrm{SnO_2}$ -based thin-film sensors were prepared by ion sputtering method and the thick-film sensors were prepared by screen printing method. The $\mathrm{SnO_2}$ -based nanowire structure sensors were fabricated by chemical vapor deposition method. The gas sensing properties of the $\mathrm{SnO_2}$ -based sensors were investigated in the 50 ppb-100 ppb $\mathrm{NO_x}$ gas at temperature ranges of $150^{\circ}\mathrm{C}$ - $250^{\circ}\mathrm{C}$. The $\mathrm{SnO_2}$ -based nanowire structure sensors showed high sensor response of approximately 9.62 and excellent recovery properties for detection of 100ppb $\mathrm{NO_x}$ at $150^{\circ}\mathrm{C}$.