Natural Leaf Inspired Z-scheme Photocatalytic CO₂ Reduction by 3-Dimensional BiVO₄/Carbon-coated Cu₂O Nanowire Arrays under Visible Light

<u>김찬솔</u>, 조경민, 정희태[†] KAIST (heetae@kaist.ac.kr[†])

Most promising and attractive CO_2 conversion photocatalysts developed thus far suffer from quite low CO_2 photoconversion efficiency due to serious bottlenecks. In this study, we present Z-scheme photocatalyst for carbon dioxide reduction by 3-dimensional $\mathrm{BiVO}_4/\mathrm{carbon}$ coated $\mathrm{Cu}_2\mathrm{O}$ nanowire array which is inspired from natural leaf. 3-D structure enhanced surface area and mass transport and charge transport. High redox potential with significantly decreased electron-hole recombination can be obtained by Z-schematic electron flow between BiVO_4 and $\mathrm{Cu}_2\mathrm{O}$ and mediation by ultrathin carbon layer. Also, protecting effect of carbon layer and Z-scheme charge flow induced outstanding photostability of $\mathrm{Cu}_2\mathrm{O}$ that is retention of 98% activity after 20hours reaction. We achieved ~3 μ 0 mesh and $\mathrm{Cu}_2\mathrm{O}$ nanowire arrays, respectively. We present characterization with various analysis method and prove Z-scheme charge flow mechanism by using cournarin as a probe molecule.