Evaluation of triiodide ion and tribromide ion as redox mediators in lithium oxygen batteries <u>김훈</u>, 선양국[†] 한양대학교 (yksun@hanyang.ac.kr[†]) In the lithium oxygen(Li- O_2) battery field, redox mediators have been intensively studied for increasing the energy efficiency and cycle life of cell by reducing the high overpotential, which induces degradation of cell components. Lithium halides have been explored as representative redox mediators in Li- O_2 batteries because of their low redox potential under 3.6 V. However, there is still controversy about the proper form of halide materials as redox mediators to decompose the discharge product of Li- O_2 batteries, lithium peroxide (Li₂ O_2). Therefore, we conducted quantitative analyses such as UV-Vis and GC-MS to confirm the ability of different halide materials to decompose Li₂ O_2 as redox mediators in Li- O_2 batteries. By controlling the byproducts during discharge and exempting the misunderstandings when using commercial Li₂ O_2 powder, we clearly demonstrated that triiodide (I_3 ⁻) and tribromide (I_3 ⁻) have sufficient ability to decompose Li₂ O_2 in Li- O_2 batteries