129

Simulation of oxy-combustion power plants with CO₂ capture

<u>부토안탕</u>, 임영일[†], 송대성, 문태영¹, 박영철¹, 이재구¹ 한경대학교; ¹KIER (limyi@hknu.ac.kr[†])

Coal is widely used in energy industries such as power plants and carbon capture and storage (CCS) technologies have been needed to reduce the burden of the CO_2 emission.

This study evaluated the economic feasibility of three 500 MWe ultra-supercritical (USC) power generation plants: (1) air-combustion without CCS (AC), (2) air-combustion with amine absorber unit (AC-AAU), (3) oxy-combustion with CO_2 processing unit (OC-CPU).

It was found that the OC-CPU process was more efficient than that of AC-AAU in terms of the energy penalty (EP), return on investment (ROI), and payback period (PBP). The EPs were 21.7% and 18.8% for AC-AAU and OC-CPU, respectively. The ROI and PBP of AC-AAU were 11.4%/yr and 7.2 yr, respectively, while those of OC-CPU were 12.1%/yr and 6.6 yr, respectively. Sensitive studies were also performed to evaluate the influence of several economic parameters such as electricity and coal prices on the ROI and PBP.