Defect-Free High-Molecular-Weight PEO Membranes with Dendrimer

<u>민효준</u>, 강동아, 이재훈, 김종학[†] 연세대학교 (jonghak@yonsei.ac.kr[†])

High-molecular-weight poly(ethylene oxide) (PEO) is considered a great candidate for CO_2 separation membrane materials because of its low cost and high CO_2 solubility. However, the use of PEO for gas separation membranes has been limited because of its crystallinity which results in structural defects. Here, improvement in the CO_2 separation

performance and mechanical strength of PEO using amine-branched poly-(amidoamine) (PAMAM) dendrimers has been investigated. PAMAM dendrimer was synthesized via two-step addition polymerization, acting as a filler in the all-polymer membranes. Transparent and uniform membranes with improved mechanical strength could be obtained by the intermolecular hydrogen bonding between the PEO and filler. The primary amine groups in PAMAM functioned as mobile carriers for the facilitated transport of CO_2 . The PEO/PAMAM membrane with 2.5 wt % PAMAM loading has a CO_2 permeability of 32.3 barrer and a CO_2/N_2 selectivity of 42, showing ~6 times greater than that of neat PEO.