Renewable hydrogen supply: lowest-cost estimate for hydrogen delivery pathways for transportation fuel

<u>Dickson Rofice</u>, 유 준^{1,†}, 류준형², 임한권³ 부경대학교; ¹부경대학교 화학공학과; ²동국대학교; ³UNIST (jayliu@pknu.ac.kr[†])

Renewable H_2 as a transportation fuel offers significant advantages over petroleumderived fuels such as no air pollution, similar performance capabilities to petrol and diesel cars, as well as fast refueling. Despite several advantages, the development of costeffective H_2 delivery infrastructure is the major hurdle in its commercialization. Furthermore, H_2 production from electrolysis requires high capital investment and therefore, cost-effective H_2 delivery system become more critically important in determining the economic feasibility of H_2 as a fuel.

Based on the above challenges, this study focusses on determining the lowest-cost H_2 delivery mode to end-user by considering compressed gas trucks, cryogenic liquid trucks, pipelines, and liquid organic hydrogen carrier (LOHC). For the distance of 100 km from the H_2 production facility to dispensing station, H_2 delivery via LOHC trailer is the most cost-effective option with a delivery cost of 1.35 \$/kg. H_2 delivery via pipelines is the most expensive with the delivery cost of 5.80 \$/kg.