Mesoporous carbon fibers/SnO₂ composite as high performance anode material for lithium-ion batteries

<u>허정원</u>¹, Rakesh Saroha¹, Xueying Li², 안주현^{1,2,†} ¹경상대학교 화학공학과; ²경상대학교 나노신소재융합공학과 (jhahn@gnu.ac.kr[†])

Lithium-ion batteries which can provide high energy densities are considered as the most promising battery for next generation energy storage. Tin oxide (SnO₂), which has a theoretical capacity of 782 mAh g⁻¹, has been studied as an anode material for LIBs. It's a promising material to replace commercialized graphite which has a theoretical capacity of 372 mAh g⁻¹. However, SnO₂ has challenges to surmount for commercialization such as relatively low conductivity and huge volumetric change. Such limitations of SnO₂ lead to precarious electrochemical performances. Herein, mesoporous carbon fibers/SnO₂ composite (MCFs/SnO₂) was prepared to solve the above-mentioned issues. MCFs based on polyacrylonitrile act as a conductor to compensate the conductivity problem of SnO₂ anode material and also provide the second current collector of the electrode. Furthermore, nanosized SnO₂ particles show less crack formation compared with bulk, resulting in stable electrochemical properties.