Low Temperature Synthesis of Micro-sized Ni_xAl_v Alloy Powders for Applications of Catalysis

<u>이유진</u>^{1,2}, 김용민¹, 차준영¹, 김영천¹, 장성철¹, 조영석¹, 정향수¹, 손현태¹, 윤창원¹, 김광범², 남석우^{1,†} ¹한국과학기술연구원; ²연세대학교

Micro-sized Ni_xAl_y alloy powders were synthesized through a low-temperature chemical alloying method using mixtures of Ni and Al powders as well as $AlCl_3$ as an activator in a quartz batch reactor at temperatures of 400 to 500 °C without sintering. Five Ni-Al alloy powders, Ni_3Al (Ni-13.3wt%Al), Ni_5Al_3 (Ni-21.6wt%Al), NiAl (Ni-31.5wt%Al), Ni_2Al_3 (Ni-40.8wt%Al), and $NiAl_3$ (Ni-58wt%Al), all thermodynamically stable at the aforementioned temperature range, were synthesized without significant changes in morphology, compared to the starting Ni powder. These as-synthesized Ni_xAl_y alloys were characterized using different analytical techniques including particle size analyzer, X-ray diffraction and field emission scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy to confirm the formation of single phase Ni_xAl_y alloys powder. These as-synthesized Ni_xAl_y alloy powders will be promising template materials to manufacture nickel skeletal catalysts with high surface area for different chemical reactions.