Effects of CO_2 injecting pressure on replacement behavior and replacement efficiency in sI and sH hydrates

<u>목정훈</u>, 최원중, 서용원[†] UNIST (ywseo@unist.ac.kr[†])

Recently, the CH_4 – CO_2 replacement using CO_2 injection into natural gas hydrates has been considered as a promising gas production technology. In this study, structure I and H hydrates which were formed with methane and methane + methylcyclopentane (MCP), respectively, were replaced with pure CO_2 gas. To identify the effect of the replacement pressure on the replacement behavior, the injecting pressure of CO_2 was controlled within pressure ranges where pure CO_2 hydrate is thermodynamically stable. To observe the replacement efficiency of each experiment, the compositions of hydrate phase were measured by gas chromatography. Additionally, Raman spectroscopy, ^{13}C NMR, and powdered X-ray diffraction were used to examine the occupancy changes of guest molecules and structural information. For sI hydrate, the replacement efficiency was found to be about 70 % irrespective of the CO_2 injecting pressure. However, for sH hydrate, the replacement efficiency was increased up to 80% with increasing the CO_2 injecting pressure, which was attributed to a larger portion of a structural transition to sI hydrate.