Temperature-dependent Release of Guest molecules and Structural Transformation of Arloaded Hydroquinone Clathrates

<u>우예솔</u>, 윤지호[†] 한국해양대학교 (jhyoon@hnu.ac.kr[†])

Mechanism of chemical reactions can be explored by replacing specific atoms by their radioisotope and tracking the passage of the isotope. 41 Ar is useful for industries in nearby locations and lowering the potential radiation hazard due to its short half-life. The β -form hydroquinone clathrate is built up from attractive forces between organic host and guest molecules inside the cages bound by hydrogen-bonded hexagons at the top and the bottom of each cage. In this study, to use β -form hydroquinone as a carrier of Ar, we synthesis the Ar-loaded β -forms HQ clathrates by gas-phase reaction. The temperature-dependent release of Ar molecules from Ar-loaded HQ was evaluated as a function of time by measuring the mass changes of the samples. In addition, High-resolution synchrotron XRD, Raman spectroscopy, and Solid state NMR measurements were used to identify the temperature-dependent structural transformation of Ar-loaded hydroquinone clathrates.