Effects of metal promoters on mesoporous Zr–incorporated Fe_2O_3 catalyst for CO_2 hydrogenation

<u>조재민</u>, 배종욱^{1,†} 성균관대학교; ¹성균관대학교 화학공학부 (finejw@skku.edu[†])

Among typical CO_x hydrogenation reactions, Fischer–Tropsch synthesis (FTS) reaction has been well–known to transform syngas to a wide range of hydrocarbons. In our previous studies, the ZrO_2 incorporated mesoporous Fe_2O_3 showed an improved catalytic activity and stability. In the present study, CO_2 hydrogenation was applied to verify the various chemical promoters such as Pt, Ru, and Mn on the highly ordered mesoporous ZrO_2 -Fe₂O₃. The metal–promoted FTS catalysts showed an enhanced catalytic activity by increasing the reducibility of the active Fe_2O_3 to form active iron carbides preferentially. In order to characterize the effects of the metal promoters on the ordered mesoporous ZrO_2 -Fe₂O₃, powder X-ray diffraction (XRD), temperature–programmed reduction (H₂-TPR), N₂ physisorption analysis, and X-ray Photoelectron Spectroscopy (XPS) were carried out.

Keywords : mesoporous Fe_2O_3 ; metal promoters; CO_2 hydrogenation; structure stability; enhanced activity and selectivity.