Catalytic Behavior of Ga Supported on Mesoporous TiO₂ Catalysts for The Dehydrogenation of Ethane to Ethylene

<u>Phan Tuan Ngoc</u>, Van Minh Hoang, 고창현[†] 전남대학교 (chko@jnu.ac.kr[†])

Mesoporous titania (m–TiO₂) was synthesized by a facile hydrothermal method. The Ga supported on m–TiO₂ catalysts (Ga/m–TiO₂) were prepared by the *in situ* hydrothermal method and the impregnation method with a Ga loading varying in the range of 5–20 wt.%. The catalytic performance of Ga/m–TiO₂ catalysts was tested in the dehydrogenation of ethane (C₂H₆). The C₂H₆ conversion and the C₂H₄ selectivity drastically changed depending on the reaction temperature, the Ga loading and the catalyst preparation method. The conversion increased with raising the temperature up to 600 °C. Among these catalysts, 10 wt.% Ga/m–TiO₂ exhibited the highest C₂H₆ conversion and C₂H₄ selectivity. The Ga/m–TiO₂ catalysts prepared by the *in situ* hydrothermal method showed better catalytic performance than Ga/m–TiO₂ catalysts prepared by the impregnation method. It can be due to the well dispersion of the small Ga species in the mesopores of m–TiO₂ during the hydrothermal treatment process. The Ga/m–TiO₂ catalysts possessed the superior conversion in compare to Ga supported on bulk TiO₂, which comes from the high surface area and high pore volume of m–TiO₂.