SO_2 sensing properties of SnO_2 –based sensor promoted with $\mathrm{Fe_2O}_3$ and TiO_2

<u>김세정</u>, 이수출, 김현지, 강후인, 우진혁, 김재창[†] 경북대학교 (kichang@knu.ac.kr[†])

Fine dust emission is a big social problem in Korea. A considerable amount of Fine dust is generated by the photocatalytic reaction of SO_2 . So, to supervise and regulate the fine dust emission, the sensor that can monitor SO_2 is preferentially required. In this experiment, we fabricated SnO_2 -based thick film gas sensors by screen printing method. Basic requirements for gas sensor are response and recovery. This sensor showed response of 3.50 and recovery properties of 21% in 1 ppm SO_2 gas at 300° C. To compensate for the poor recovery property, 5 wt% Fe_2O_3 and TiO_2 were added, respectively. Experimental results show that the sensor calcinated at 400° C has a sensitivity of 2.75, a recovery property of 100% and an 80% recovery time of 97s, which is superior to that of the SnO_2 based thick-film sensor.