Evaluation of sustainable carbon monoxide production via electrochemical ${\rm CO}_2$ reduction reaction <u>이재서</u>, 유경환¹, 박기태², 이재형[†] 한국과학기술원; ¹순천대학교; ²한국에너지기술연구원 (jayhlee@kaist.ac.kr[†]) Carbon monoxide is one of the most significant chemicals as a base material of chemical industrials. However, a conventional production process of carbon monoxide causes a high amount of CO_2 emission, which causes climate change. Electrochemical CO_2 reduction based technology is proposed as one of the ways to replace the conventional process. In addition, this technology is a feasible and sustainable technology where both CO_2 utilization and storage of the excess electricity from renewable energy power plants simultaneously. In this study, new processes of the technology using an electrochemical reaction is proposed and designed. For a comprehensive and comparative assessment of the environmental and techno-economic performance of this CO_2 capture and utilization option, CO_2 lifecycle assessment (LCA) and techno-economic analysis (TEA) are conducted.