Evaluation of Sustainable ${\rm CO}_2$ utilization processing paths for ${\rm CO}_2$ reduction and economics: DRM and SRM

<u>임형묵</u>, 노고산¹, 이재형[†] 한국과학기술원; ¹아헤 공대

The global warming due to the anthropogenic greenhouse gas (GHG) emission such as fossil fuel usage and industrial processes has become an intensely debated issue recently. To manage the GHG (especially, CO_2) emission, CO_2 conversion has attracting much attention There are various options of CO_2 conversion such as dry reforming of methane, combined reforming, tri-reforming, and etc. Especially, Dry reforming of methane (DRM) is one of the promising CO_2 conversion reactions because one of its feed, natural gas, is cheap and the high CO_2 feed ratio ($CH_4:CO_2=1:1$) can lead to large CO_2 reduction effect comparing to other reforming. Also, produced H_2 , CO syngas can be utilized for synthesizing chemical product. When producing H_2 , Steam reforming of methane (SRM) is well known process and compared with various kinds of CO_2 reforming. Therefore, design and analysis of chemical process based on DRM and SRM within the framework of CO_2 reduction and economic cost is performed. Finally, finding out which reforming process is promising to produce certain chemical product in this study.