Effect of in-situ Ti doping and SiO_x hole transport channel on Ti-ZnFe₂O₄/SiO_x/CoPi nanocoral array photoanode for efficient photoelectrochemical water splitting

<u>Anushkkaran Periyasamy</u>, Mahadik Mahadeo Abasaheb, 황준범, 김사랑¹, 채원식², 이현휘³, 최선 희³, 장점석[†]

전북대학교; ¹울산과학기술원; ²한국기초과학지원연구원 대구센터; ³포항공과대학교 가속 기연구소

(jangjs75@jbnu.ac.kr[†])

Photoelectrochemical (PEC) water splitting efficiency is limited by the high overpotential, severe recombination of photogenerated charges in bulk, and surface of the photoanodes. In this study, we propose the SiO_x-modified Ti-ZnFe₂O₄ (Ti-ZFO/SiO_x) nanocorals array, an advanced photoelectrode material that conjugates the in-situ Ti-doped ZnFe₂O₄ nanocorals and the second-order SiO_x hole transport channel layer via combining the hydrothermal and microwave methods. The in-situ Ti doping in ZnFe₂O₄ (Ti-ZFO) and the microwave-assisted SiO_x hole transport channel yield improved hole transfer to the coupled oxidation co-catalyst (Co-PI) in Ti-ZFO/SiO_x/CoPI photoanode. Compared to Ti-ZFO, 1.6 times enhancement in photocurrent density (0.570 mA/cm²) was achieved for the Ti-ZFO/SiO_x/CoPI photoanode at 1.23 V_{RHE}. Owing to the synergistic effect of the Ti doping and SiO_x hole transport channel in the optimized Ti-ZnFe₂O₄/SiO_x/CoPI nanocorals electrode, 70 and 34 µmol H₂ and O₂, respectively, were evolved during 10 h PEC water splitting. Therefore, our work is the foundational pilot for constructing the hole transport channel between photoanode and electrolyte via the microwave method.