Investigation on the electric characteristics of 2 dimensional β -phase Ga₂O₃ based field effect

 β phase Ga₂O₃ (β -Ga₂O₃) has recently gained a lot of interest for applications in high power devices, solar-blind photodetectors, and gas sensors. The interest stems from its intrinsic material properties, such as wide bandgap nature of 4.9 eV and high breakdown electric field of 8 MV cm⁻¹, leading to making its devices more efficient with small size dimensions for high power device and harsh environmental sensor. The wide bandgap nature enables Ga₂O₃ based electronic devices to operate at high temperatures due to its low intrinsic carrier concentration. The large lattice constant of 12.23 Å of β -Ga₂O₃ along [100] direction enables to achieve the facile cleavage of β -Ga₂O₃ crystal into 2-dimensional flake though β -Ga₂O₃ is not a Van der Waals material. The thin channel of Ga₂O₃ flake is beneficial to the FET (field effect transistor) type gas sensor. In this study, the electric characteristics of 2 dimensional β -Ga₂O₃ flake base field effect transistor was investigated by the device simulation, and the results were compared with that of the fabricated device.