Kinetic selectivity of SF_6 during formation and dissociation of $SF_6 + N_2$ hydrates for hydratebased gas separation

This study investigated the time-dependent kinetic selectivity of SF_6 in the hydrate-based gas separation process thorough both experimental and computational approaches. The enclathrating and releasing behaviors of SF_6 in $SF_6 + N_2$ hydrates were analyzed using in-situ Raman spectroscopy, gas chromatography, and micro-second molecular dynamics (MD) simulations. During hydrate formation, the growth pattern of the Raman peak for enclathrated SF_6 was similar to that for enclathrated N_2 , and the SF_6 composition in the hydrate phase was almost constant. Furthermore, the captured SF_6/N_2 ratio in the hydrate structure obtained from the MD simulation was almost constant during hydrate formation. These results demonstrated that there was no significant kinetic selectivity of SF_6 during hydrate formation. In addition, the in-situ Raman spectra and MD simulation results demonstrated that SF_6 was not kinetically selective during hydrate dissociation. These overall results will be helpful for determining the optimal operation time for the hydrate formation and dissociation process and thus for designing and operating the hydrate-based SF_6 separation process.