Effective Screening Route for Highly Active and Selective Metal-Nitrogen-Doped Carbon Catalysts in CO_2 Electrochemical Reduction

<u>박병준</u>, Ying Wang, 이예찬, 한정우[†] 포항공과대학교 (jwhan@postech.ac.kr[†])

Electrochemical CO₂ reduction reaction (CO₂RR) is a promising approach to close the CO₂ cycle as waste CO₂ into a useful chemical. We present a screening route that uses density functional theory calculations to figure out high-efficiency metal-nitrogen-doped (M-N-C) catalysts for the CO₂RR. Twenty-three M-N-C catalysts were evaluated, and three M-N-C (M = Fe, Co, or N) were identified as promising candidates and tested as proof-of-concept catalysts. We propose different key descriptors, including the maximum reaction energy, differences of the *H and *CO binding energy ($\Delta G_{*H} - \Delta G_{*CO}$), and *CO desorption energy ($\Delta G_{*CO \to CO(g)}$) to clarify the reaction mechanism at different potential region. These computational descriptors effectively predicted the experimental observations in the entire range of electrochemical potential. This screening route provides a guideline for the rational design of heterogeneous CO₂RR electrocatalysts.