Colloidal Semiconducctor Nanocrystals for Solar-driven CO2 Conversion

Wang Nanfang, 이도창[†]
KAIST
(dclee@kaist.edu[†])

Solar-driven carbon dioxide (CO_2) photo-reduction into chemical fuels provides a sustainable way to produce renewable energy sources by consuming the ever-increasing greenhouse gas Nevertheless, due to intrinsic inertness (\sim 750 kJ mol⁻¹ of C=O bond dissociation energy) of linear CO_2 molecule. Here, in an attempt to establish a universal guideline for rational design of stable photocatalyst with high photo-conversion efficiency and selectivity for CO_2 conversion. We systematically investigate the structure-photocatalytic properties correlations using binary CdS colloidal nanocrystal (NC) as a model system. The colloidal CdS nanocrystal is chosen not only for the tunable band structure (\geq 2.41 eV) which can potentially afford visible light harvesting and sufficient energetic e⁻ and h⁺, but also for the versatile controllability over its morphology, crystal structure and surface termination, which provides a broad monitoring window enable us to clarify the structure-property relationship in complex CO_2 photo-reduction process