Nanoporous Hydrogen–Substituted Graphdiyne Gas Sensor with High Sensitivity and Fast Response

<u>남윤태</u>, 강호형, 정상규, 김용재, 이원무, 조수연¹, 김지한, 정희태[†] 한국과학기술원; ¹MIT (heetae@kaist.ac.kr[†])

Development of a high-performance chemical gas sensor is a big challenge in safety issues and diagnosis Despite significant effort in improving sensitivity and speed, existing sensing materials are still limited based on material properties. Therefore, a new design of sensing material is highly required to overcome limitations: strong binding site, chemical tunability, and porous structure. Herein, for the first time, we demonstrate a novel gas sensing channel based on hydrogen-substituted graphdiyne (HsGDY). In addition to hierarchical nanoporous structure, this HsGDY also has abundant triple bondings which provide strong active site. The HsGDY gas sensor exhibited extraordinary sensing performance with 2 orders of magnitude higher response compared to MoS₂, GO, MXene, CNT for various gases. In particular, ultra-high sensitivity for hydrogen gas ($\Delta R/R_b = 278\%$ against 1% of the hydrogen gas) were achieved with square-like fast response and recovery speed ($\tau_{90} = 9$ sec and $\tau_{10} = 38$ sec toward 1% of H₂), far exceeding 2D material-based gas sensors. We believe that this carbon-rich framework could open up an approach to develop high performance chemical gas sensor.