Ethylene oligomerization over bimetallic NFe-BTC catalysts

Nguyen Thi Kim Chau, VO QUANG NHAT QUYNH, 정영민[†] Kunsan National University (ymchung@kunsan.ac.kr[†])

While linear a-olefins (LAOs) synthesis via selective ethylene oligomerization has been extensively studied, the selectivity control for C4-C8 LAOs over a heterogeneous catalyst remains an elusive goal. In this work, we propose a new and efficient catalyst design for the ethylene oligomerization; heterogeneous bimetallic $Fe_xNi_{1-x}BIC$ framework (benzene-1,3,5-tricarboxylate). While Fe-BIC was ineffective in promoting the ethylene oligomerization, the incorporation of Fe in the N-BIC structure exerted large influence on the a-olefin selectivity. It was revealed that the N/Fe ratio played a crucial role in attaining a high a-olefin selectivity, and the activity and 1-C6 and 1-C8 selectivity reached as high as 230.5 g.g_{Ni}⁻¹.h⁻¹ and 15 wt%, respectively, in the presence of the bimetallic $Fe_{0.1}N_{0.9}$ -BIC catalyst and MMAO at 60°C and 30 bar. The excellent selectivity demonstrates the potential application of MOF catalysts for the ethylene oligomerization.