Relationship between Basicity and Activity in CO₂ hydrogenation using Mesoporous Metal Oxide Spinels

The study of the conversion of CO_2 to other materials (e.g., CO, CH₃OH, CH₄, hydrocarbon) has been attracting great interest to many scientists. In this study, we carried out the CO_2 hydrogenation in the presence of H₂ using mesoporous bimetallic aluminum spinel oxide (i.e., ZnAl₂O₄, CuAl₂O₄, CoAl₂O₄, MgAl₂O₄) as heterogeneous catalysts. Most catalysts produced CO as the major product (> 80%). We carried out the reaction at 300 – 400 °C for each catalyst, and as a result, CuAl₂O₄ showed the highest CO₂ conversion. Correlating with the CO₂–TPD profiles of all catalysts, the relationship shows that the larger the amount of the strong basic site, the higher the CO₂ conversion. We suggested that the sufficiently strong basic sites could bind CO₂ efficiently. In addition, due to the high surface area of the mesopores of the catalysts, the catalyst has high catalytic activity. We obtained the activation energies of all catalysts through the Arrhenius plot. The results demonstrated that CuAl₂O₄ presented the lowest activation energy.

2194