Selective oxidation of NH_3 and CO emission with superior N_2 selectivity by adding low Pt content over Vanadium-based SCR catalyst

<u>변상우</u>, 강성봉^{1,†}, Bekelcha T. Gadisa², 박포원² GIST; ¹광주과학기술원; ²(주)나노 (sbkang@gist.ac.kr[†])

The emission of CO and NH₃ from industry and power plant exhausts is a major concern in the air pollution control. One practical aftertreatment approach is a direct use of the modified NH₃–SCR catalyst in rear part as a selective oxidation of CO and slipped NH₃. We report a strategy of vanadium–based SCR catalyst by adding 0.3 wt.% Pt loading (PtVW/TiO₂) for the oxidation of CO along with selective catalytic oxidation of NH₃. The PtVW/TiO₂ catalyst showed a high N₂ selectivity (>90%) at the valid temperature range (350–400 °C), which was clearly distinct from the Pt–only catalyst. We examined the strong interaction between Pt and V over bimetallic Pt–V sites, resulting in the improved N₂ selectivity. The increase of reducibility and surface acidity attributed to the enhancement of N₂ selectivity. The reaction network was also identified with observations by DRIFTs, suggesting the pathway of N₂ formation could be triggered by internal–SCR and CO–SCR surface reactions.