Effects of Crystal Phase and Reduction Treatment on the Mercury Oxidation Activity of VO_x/TiO_2 Catalyst: A DFT Study

<u>여운석</u>, 신동재, 한정우[†] POSTECH (jwhan@postech.ac.kr[†])

Mercury (Hg) has been considered hazardous because of its toxicity and bioaccumulation property. Stationary combustion source still emits significant amounts of flue gas containing the elemental form of Hg (Hg⁰). Although the Hg⁰ is very difficult to remove as it is insoluble and hard to capture without additional treatments, VO_x/TiO_2 catalyst, known as SCR catalyst, can oxidize the Hg⁰ into Hg²⁺ which is soluble and easily removed. Here, Hg oxidation activity was investigated using density functional theory (DFT) calculations based on the Eley–Rideal (E–R) mechanism. By using reduced and bare TiO₂ with anatase phase and those with rutile phase, the effects of TiO₂ phase and reduction treatment on the activity were studied; notably, the oxygen vacancy on the reduced TiO₂ led to structural transformation of V_2O_5 , thus changing the oxidation state of V from 5+ to 4+. This work demonstrates the necessity of cautious pre-treatment of TiO₂ support and gives a guidance about which TiO₂ phase should be chosen to achieve improved Hg oxidation activity.