Intrinsically Dual-Emissive Organic Nanoparticles Prepared by Air Oxidation of Aminoquinoline Derivatives

<u>원성연</u>, 권우성^{1,†} 숙명여자대학교대학원; ¹숙명여자대학교 (wkwon@sookmyung.ac.kr[†])

The development of multicolor fluorophores has been one of the great challenges for their various fields of applications such as cell counting/sorting, diagnostics, therapeutics, and optoelectronics. In this report, we have synthesized intrinsically dual-emissive organic nanoparticles (ONs) via air oxidation of a series of single-molecular aminoquinoline derivatives. Our ONs show two distinct emissions at around 450 and 500 nm, which could be assigned respectively to the polycyclic-carbon-centered π - π * transitions and the pyridine-centered n- π * transitions. The related mechanism has been thoroughly studied by the Stern-Volmer quenching analysis and time-resolved photoluminescence spectroscopy. Finally, we fabricate color-converting films employing ONs to emit two different colors depending on the control wavelength. Our findings provide a pathway for the design of multicolor fluorophores for various optical and biomedical applications.