Enhancing photocatalytic performances of the porous g-C₃N₄ by adding n-type components

<u>강은선</u>, 김정현[†] 서울시립대학교 (jhkimad@uos.ac.kr[†])

Graphitic carbon nitride $(g-C_3N_4)$ issued tunable electronic semiconductor, which are attracted by visible-light activity, facile synthesis from low-cost materials, chemical stability, and unique layered structure. The two-dimensional $g-C_3N_4$ has suitable band gap (about 2.83eV) that expects to enhance photocurrent density under the visible light. However, the pristine $g-C_3N_4$ has the low charge transportation efficiency and chemical instability. Hence, we fabricated $g-C_3N_4$ in the form of porous heterostructure photocatalysts. The slurry from photocatalysts was loaded on to the FTO glass surface by doctor-blade method. The thin photocatalytic film added n-type components via the spin coating method. It provides versatile photoelectrochemical properties for the efficient design of visible light active photocatalysts and promising electrode materials for H₂ evolution and environmental remediation.