Ultrafast and hydrogen selective nanoporous graphene membrane prepared by confinedpressure-annealing

<u>김정필</u>, 김대우[†] 연세대학교 (audw1105@yonsei.ac.kr[†])

As the interests of hydrogen(H_2) purification from industry gas is growing, the H_2/CO_2 separation has been drawn attention more than before. Among various membrane materials of H_2/CO_2 separation, porous graphene oxide (GO) membrane is the most well-known for having high flux and selectivity because of their thin thickness and pore. However, porous GO membrane has the disadvantage of making it in large-scale. Herein, we demonstrate mass production method for manufacturing the porous GO membrane which has high selectivity and H_2 permeance. Membranes were prepared on porous polymer membrane by a bar coater. To control the d-spacing and the pore size, GO membrane was hot-pressed (150 °C, 13.33 kg/cm²) for 5 hours. The hot-pressed GO membrane had low d-spacing value (3.8 and 4.8 Å) by hot-press method, but H_2 permeance and H_2/CO_2 selectivity had increased due to pore was formed on GO layer. The hot-pressed GO membrane showed excellent separation performance with H_2/CO_2 selectivity of 12 ± 1.31 and H_2 permeance of $1.84 \pm 0.5 \times 10^{-6}$ mol m⁻² s⁻¹ Pa⁻¹.