Adsorption breakthrough characteristics of H₂S in CH₄ on zeolite 3A and 5A

<u>조영호</u>, Masoud Mofarahi¹, 이창하[†] 연세대학교; ¹Persian Gulf University (leech@yonsei.ac.kr[†])

Sulfur compounds must be removed from natural gas because of corrosion of processes and catalyst poisoning, let alone ever strict environmental regulations. The sulfur concentration in natural gas should be removed to the level of 1 ppm for utilization in pipeline grade.

In general, a process using an aqueous alkanolamine solution is used for desulfurization of raw natural gas from a well. However, this process requires high energy for regeneration, and corrosion of the device and loss of solution can occur. Therefore, after treating natural gas through the process operated at a limited condition, the treated natural gas still contains a certain level of sulfur compounds. Then, to purify natural gas, the adsorption technology is wide used a secondary unit.

In this study, the adsorption breakthrough characteristics of H_2S on zeolites 3A and 5A were conducted because zeolite A is cost-effective and widely used in industries. H_2S of 50 ppm balanced by CH_4 was used, and the breakthrough results at 9 bar and 45 °C were compared.