Enhanced fill factor for normal n-i-p planar heterojunction and mesoscopic perovskite solar cells using ruthenium-doped TiO₂ electron transporting layer

<u>Mali Sawanta</u>, 홍창국[†] Chonnam National University (hongck@jnu.ac.kr[†])

The electron transporting layer (ETL) employed in such PSCs has been a critical component for improving their performance. The present work focuses on the synthesis of high-quality Ru-doped compact TiO_2 (c-TiO₂) ETLs (Ru:c-TiO₂) by a simple spincoating technique. Further, the role of Ru⁴⁺ cation doping in c-TiO₂ is discussed in detail. A systematic study revealed that the Ru-doping not only significantly influences the open-circuit voltage (Voc), current density (Jsc), and fill factor (FF) but also suppresses the charge recombination in the perovskite devices. The PSCs prepared using Ru-c-TiO₂ ETLs with optimum Rudoping content exhibited PCEs of 19.48% for planar and 20.87% for mesoscopic device architecture with enhanced photovoltage. Additionally, the fabricated PSC devices based on 1.5% Ru:c-TiO₂ ETLs exhibited air stability over 200 days, which

is much higher than that of a control device.