Studies on SnS₂ nanoparticles synthesized by chemical process for photovoltaic and photocatalytic applications

<u>알하마디 살레</u>, Sreedevi Gedi, 문보경, Abdelrahman M Rabie, 심재진, 김우경[†] 영남대 (wkim@ynu.ac.kr[†])

A simple binary metal chalcogenide, tin disulfide (SnS₂) has been proposed as a promising material for solar energy applications as a result of its earth abundant, low-cost, and non-toxic nature. The present work shows the precipitation of SnS₂ nanoparticles (NPs) and the deposition of SnS₂ thin films by a simple chemical precipitation method and spin coating technique, respectively. The presence of Sn and S in the deposited films along with identical composition were confirmed from XPS results, which the appeared peaks at binding energies of 486.3 eV, 494.6 eV; and 162.5 eV assigned to Sn 3d_{5/2}, Sn 3d_{3/2} and S p_{3/2} of SnS₂ films respectively. The characteristic vibrational modes at ~310 cm⁻¹, assigned to hexagonal SnS₂ were confirmed from Raman spectrum results. The current density–voltage (I–V) measurements of the CIGS solar cell showed open circuit voltage (V_{oc}) of 0.41 V, short circuit current density (J_{SC}) of 25.67 mA cm⁻², fill factor (FF) of 49% and conversion efficiency (n) of 5.14%. Also, as prepared SnS₂ NPs are found to be an efficient photocatalytic for degradation of organic pollution in water.