Wet etching study of β -Ga₂O₃

<u>김유경</u>, 김만경, 백광현¹, 장수환[†] 단국대학교; ¹홍익대학교 (jangmountain@dankook.ac.kr[†])

Recently, there are great interest in β -Ga₂O₃ for solar-blind deep ultraviolet (UV) detector and high-power electronics applications. Due to its wide bandgap of 4.9eV, the β -Ga₂O₃ based devices show excellent power density and visible light insensitivity, especially at high temperature and in harsh environment. The Baliga's and Johnson's figure of merit for β -Ga₂O₃ is far larger than other wide bandgap semiconductors such as GaN and SiC attributed from high critical field strength and reasonable field effect mobility. Wet etching process of semiconducting material is one of essential device fabrication steps, and has many advantages over dry etching in low cost, minimal surface damage, and good selectivity. Monoclinic β -Ga₂O₃ shows significantly different surface atomic arrangement and density depending on its crystal plane, which result in unique wet etching to its crystal planes.

Keywords

 β -Ga₂O₃, wet etching, crystal plane, dangling bond