Systematic analysis of crystal growth rate and morphology of CaCO₃ synthesis through *in situ* optical microscopy combined with microfluidic device and change of the proportion of CaCO₃ crystal phase according to functionalized hyperbranched polymer additives

<u>장은혜</u>, 김보람, 오유관, 정성욱[†] 부산대학교 (sungwook.chung@pusan.ac.kr[†])

Biomineralization has been widely studied to control and understand its mechanism in natural-synthetic systems. Calcium carbonate $(CaCO_3)$ is one of the most abundant and important biominerals present in the natural environment. Many additives including polymer and protein, are studied for self-assembly of $CaCO_3$ for various morphologies and applications because of their several advantages. Under natural conditions, however, the formation of $CaCO_3$ occurs slowly.

Herein, We designed several functionalized materials based on the hyperbranched polymer (HBP) which affects the formation of $CaCO_3$ crystalline structure. In particular, through an optical microscope combined with a microfluidic device, the pattern and rate of initial stage crystal growth and the morphology of the final crystal phase will be statistically calculated and derived *in situ*. Finally, we have a plan to developing a system that can accelerate CaCO₃ formation and systematic analysis.