Layered Double Hydroxide Derived Intermetallic Ni_3GaC_x Catalysts for Dry Reforming of Methane

<u>김광영</u>, 이재성[†] UNIST (jlee1234@unist.ac.kr[†])

NiMgGa-layered double hydroxide (NMG-LDH) was synthesized as an efficient catalyst precursor for dry reforming of methane which shows high stability at low temperature (~600°C). NMG-LDH was transformed to Ni₃Ga intermetallic structure after the reduction pre-treatment, which exhibited high CH₄ (~48%) and CO₂ (~52%) conversion as well as high stability compared to other reported monometallic Ni-based catalysts under similar reaction conditions. The stability of Ni₃Ga intermetallic catalysts was superior to that of monometallic catalysts (Ni/MgO or Ga/MgO) due to high coke resistance property. The formation of unique intermetallic carbide (Ni₃GaC_x) during the reaction was responsible for the outstanding stability compare to the conventional Ni monometallic phase. The formation of Ni₃GaC_x intermetallic carbide structure was confirmed by XRD, HR-TEM, and XAS analysis. *In situ* XRD analysis was investigated to elucidate formation mechanism of Ni₃GaC_x structure and reaction mechanism on the Ni₃GaC_x during the reaction. Carburization of Ni₃Ga by CH₄ and oxidation of Ni₃GaC_x by CO₂ make a redox cycle, resulting in high activity and stability.