Development of Metal Doped TiO₂ Nanotubes to Improve the Activity and Stability of Water-Gas Shift Reaction

<u>장명곤</u>, 노경종, 한정우[†] 포항공과대학교 (jwhan@postech.ac.kr[†])

Water-gas shift reaction (WGSR) produces CO_2 and H_2 through the reaction of CO and H_2O to remove CO deactivating fuel cells and provide high purity H_2 . Supported metal catalysts are widely used as catalysts for WGSR. Among these catalysts, it has been reported that a small amount of precious metals (Rh, Pd, Pt, Au)-loaded active supports (TiO₂, ZrO₂, CeO₂) have higher activities than commercial catalysts. In particular, since TiO₂ has better activity with Pt-loading than CeO₂ and ZrO₂, many studies are in progress. In this study, the morphology of TiO₂ was controlled and several dopants were introduced. Especially, nanotubes have higher surface area than particles and high reducibility depending on the surface facet. We found that V-doped TiO₂ nanotubes significantly improve the activity and stability of Pt/TiO₂ catalyst because the V dopant inhibits crystal growth and improves the redox properties of TiO₂.