A study on the influence of chemical oxidation on Pt containing graphitic carbon nitride photocatalysts in Photocatalytic Hydrogen production

<u>Dao Duc Quang</u>, 웬티킴안, 왕명연, 김상윤, 신은우[†] University of Ulsan (ewshin@ulsan.ac.kr[†])

In this study, we prepared Pt-containing graphitic carbon nitride $(g-C_3N_4)$ catalysts modified by a simple chemical oxidation of $g-C_3N_4$ and applied them for photocatalytic hydrogen evolution tests for the first time. The hydrogen production rates of the chemically oxidative Pt/g-C₃N₄ photocatalysts were at least five times as high as those of the bulk Pt/g-C₃N₄. The chemical oxidation of $g-C_3N_4$ introduced the oxygen-containing functional groups on the tri-s-triazine units, resulting in more negatively charged surface of $g-C_3N_4$. During the Pt photodeposition on the $g-C_3N_4$ surface, the chemically oxidative $g-C_3N_4$ with more negatively charged surface and the functional groups not only promoted the agglomeration of Pt nanoparticles on the $g-C_3N_4$ surface but also maintained the high ratio of Pt²⁺/Pt⁰ for the Pt nanoparticles, which enhanced the hydrogen evolution rate by suppressing the reversible reaction route of H₂ to 2H⁺. In addition, the presence of the oxygen-containing functional groups on the chemically oxidative $g-C_3N_4$ increased the separation efficiency of photo-excited charges over Pt/g-C₃N₄.