Investigation into the start-up solvent for slurry phase Fischer-Tropsch synthesis

<u>이경우</u>^{1,2}, 임근배², 이현송², Deviana Deviana², 윤민혜², 이관영¹, 천동현^{2,†}

¹고려대학교; ²한국에너지기술연구원

(cdhsl@kier.re.kr[†])

Fischer–Tropsch synthesis (FTS) is considered an attractive way to produce valuable hydrocarbon products from low-value carbon–containing resources such as coal, natural gas, waste biomass/plastics, and CO₂ via syngas (CO + H₂). A slurry phase reactor can be efficiently used for FTS because this reactor can easily remove the heat released from catalysts to heat exchanger via a liquid medium, which allows near isothermal operation of FTS. A liquid medium is essential for carrying out the FTS in a slurry phase reactor. In particular, an initial liquid medium should be included in the slurry phase reactor. Therefore, the start-up solvent can play an important role in determining catalyst performance in the slurry phase FTS. In this study, we performed the FTS in a continuously stirred tank reactor (CSTR) using various start-up solvents such as mineral oil, icosane, and squalene. We focused on the effects of start-up solvents on the activity, stability, and selectivity of precipitated iron-based catalysts. The activity and stability were evaluated in terms of CO conversion as a function of reaction time, and the selectivity was evaluated in terms of hydrocarbon distribution.