Metal precursor impregnation sequence effect for low-temperature NH_3 -SCR of NO and reaction mechanism over Mn-Ce/TiO₂ catalyst

<u>김민재</u>¹, 윤재랑^{2,3}, 정순관³, 이승재³, 유인수³, 전상구³, 이기봉^{1,†} ¹고려대학교; ²충남대학교; ³한국에너지기술연구원

In order to investigate the effect of impregnation sequence on CeO_2 -promoted Mn/TiO₂ catalyst for low-temperature NH₃-SCR of NO, Mn/TiO₂, Mn/Ce/TiO₂, Mn-Ce/TiO₂, and Ce/Mn/TiO₂ catalysts were synthesized. Among these catalysts, Mn-Ce/TiO₂ exhibited the highest catalytic performance due to Mn dispersion and oxidation state of Mn, Ce, and O, confirmed by TEM, XPS, and H₂-TPR. Furthermore, DRIFT study showed that the catalyst synthesis method influenced the reaction mechanism which highly affects the catalytic activity.

화학공학의 이론과 응용 제27권 제1호 2021년