Catalytic Effects of Supported Pd Catalysts Having Different Surface Characteristics on Dehydrogenation of 2–[(*n*-Methylcyclohexyl)methyl]piperidine as the Liquid Organic Hydrogen Carrier

<u>김용석</u>, 송요한, 최유열, 김유환, 정관용¹, 박지훈¹, 고경철, 나경수[†] 전남대학교; ¹한국화학연구원 (kyungsu_na@chonnam.ac.kr[†])

Liquid Organic Hydrogen Carrier (LOHC) technology is considered as one of the promising means for safely storing and transporting hydrogen. Recently, 2–(n–methylbenzyl)pyridine (H₀–MBP) has been designed and synthesized. The perhydro product (i.e., 2–[(n–methylcyclohexyl)methyl]piperidine (H₁₂–MBP)) is a highly stable liquid that can be delivered to demand sites where it can release H₂ via catalytic dehydrogenation. Here, we investigated the effect of the metal oxide supports on the surface characteristics of supported Pd catalysts and their catalytic performances during H₂ release from H₁₂–MBP via catalytic dehydrogenation. Various types of Pd–supported metal oxides (Al₂O₃, CeO₂, TiO₂, ZrO₂, and SnO₂) were synthesized and their differences in acidity, reducibility, and strength of metal–support interaction to Pd metal nanoparticles resulted in the property changes in supported Pd catalysts and thus their catalytic performances during dehydrogenation of H₁₂–MBP.

화학공학의 이론과 응용 제27권 제1호 2021년