1 |
Surface modification of TiO2 with copper clusters for band gap narrowing Sharma PK, Cortes MALRM, Hamilton JWJ, Han YS, Byrne JA, Nolan M Catalysis Today, 321, 9, 2019 |
2 |
Features of the formation of nanoparticles based on copper in thin-layer systems Ragachev AV, Jiang XH, Liu XH, Yarmolenko MA, Rogachev AA, Gorbachev DL, Liu ZB Applied Surface Science, 317, 449, 2014 |
3 |
Indications for metal-support interactions: The case of CO2 adsorption on Cu/ZnO(0001) Wang J, Funk S, Burghaus U Catalysis Letters, 103(3-4), 219, 2005 |
4 |
Spectroscopic observation and ab initio simulation of copper clusters in zeolites Petranovskii V, Gurin V, Machorro R Catalysis Today, 107-08, 892, 2005 |
5 |
Cu cluster adhesion enhancement on the modified Dow Cyclotene surface through low energy N-2(+) beam irradiation at grazing angles Yang DQ, Sacher E Applied Surface Science, 207(1-4), 1, 2003 |
6 |
Energy-resolved collision-induced dissociation of Cu-n(+) (n=2-9): Stability and fragmentation pathways Ingolfsson O, Busolt U, Sugawara K Journal of Chemical Physics, 112(10), 4613, 2000 |
7 |
(THF)(8)Ln(8)E(6)(EPh)(12) cluster reactivity: Systematic control of Ln, E, EPh, and neutral donor ligands Freedman D, Emge TJ, Brennan JG Inorganic Chemistry, 38(20), 4400, 1999 |
8 |
Vanadium clusters: Reactivity with CO, NO, O-2, D-2, and N-2 Holmgren L, Rosen A Journal of Chemical Physics, 110(5), 2629, 1999 |
9 |
First principles study of adsorbed Cu-n (n=1-4) microclusters on MgO(100) : Structural and electronic properties Musolino V, Selloni A, Car R Journal of Chemical Physics, 108(12), 5044, 1998 |
10 |
Structural and electronic properties of small Cu-n clusters using generalized-gradient approximations within density functional theory Massobrio C, Pasquarello A, Dal Corso A Journal of Chemical Physics, 109(16), 6626, 1998 |