1 |
In-situ shear strength of compacted demolition waste Xu YF Powder Technology, 352, 72, 2019 |
2 |
A study on the CO2 capture and attrition performance of construction and demolition waste Cai JJ, Wang SZ, Xiao ZZ Fuel, 222, 232, 2018 |
3 |
Fractal dimension of demolition waste fragmentation and its implication of compactness Xu YF Powder Technology, 339, 922, 2018 |
4 |
Torrefaction of biomass from municipal solid waste fractions II: Grindability characteristics, higher heating value, pelletability and moisture adsorption Iroba KL, Baik OD, Tabil LG Biomass & Bioenergy, 106, 8, 2017 |
5 |
Torrefaction of biomass from municipal solid waste fractions I: Temperature profiles, moisture content, energy consumption, mass yield, and thermochemical properties Iroba KL, Baik OD, Tabil LG Biomass & Bioenergy, 105, 320, 2017 |
6 |
Geopolymer based on concrete demolition waste Vasquez A, Cardenas V, Robayo RA, de Gutierrez RM Advanced Powder Technology, 27(4), 1173, 2016 |
7 |
Characterization of Ceramic-Based Construction and Demolition Waste: Use as Pozzolan in Cements Asensio E, Medina C, Frias M, de Rojas MIS Journal of the American Ceramic Society, 99(12), 4121, 2016 |
8 |
Elemental balance of SRF production process: Solid recovered fuel produced from construction and demolition waste Nasrullah M, Vainikka P, Hannula J, Hurme M, Koskinen J Fuel, 159, 280, 2015 |
9 |
Soil retention of hexavalent chromium released from construction and demolition waste in a road-base-application scenario Butera S, Trapp S, Astrup TF, Christensen TH Journal of Hazardous Materials, 298, 361, 2015 |
10 |
Composition and leaching of construction and demolition waste: Inorganic elements and organic compounds Butera S, Christensen TH, Astrup TF Journal of Hazardous Materials, 276, 302, 2014 |