1 |
Melt fracture modeled as 2D elastic flow instability Kwon Y Rheologica Acta, 54(5), 445, 2015 |
2 |
Decoupled algorithm for transient viscoelastic flow modeling Kwon Y, Park KS Korea-Australia Rheology Journal, 24(1), 53, 2012 |
3 |
Convergence limit in numerical modeling of steady contraction viscoelastic flow and time-dependent behavior near the limit Kwon Y, Han JH Korea-Australia Rheology Journal, 22(4), 237, 2010 |
4 |
Numerical description of start-up viscoelastic plane Poiseuille flow Park KS, Kwon YD Korea-Australia Rheology Journal, 21(1), 47, 2009 |
5 |
Numerical result of complex quick time behavior of viscoelastic fluids in flow domains with traction boundaries Kwon Y Korea-Australia Rheology Journal, 19(4), 211, 2007 |
6 |
Numerical analysis of viscoelastic flows in a channel obstructed by an asymmetric array of obstacles Kwon Y Korea-Australia Rheology Journal, 18(3), 161, 2006 |
7 |
Finite element analysis of viscoelastic flows in a domain with geometric singularities Yoon S, Kwon Y Korea-Australia Rheology Journal, 17(3), 99, 2005 |
8 |
Finite element analysis of planar 4:1 contraction flow with the tensor-logarithmic formulation of differential constitutive equations Kwon Y Korea-Australia Rheology Journal, 16(4), 183, 2004 |
9 |
Differential viscoelastic constitutive equations for polymer melts in steady shear and elongational flows Zatloukal M Journal of Non-Newtonian Fluid Mechanics, 113(2-3), 209, 2003 |
10 |
Finite element modeling of high Deborah number planar contraction flows with rational function interpolation of the Leonov model Kwon Y, Kim SJ, Kim S Korea-Australia Rheology Journal, 15(3), 131, 2003 |