1 |
Dielectrophoretic separation of microalgae cells in ballast water in a microfluidic chip Wang YJ, Wang JS, Wu XD, Jiang Z, Wang W Electrophoresis, 40(6), 969, 2019 |
2 |
Influence of the cell wall of Chlamydomonas reinhardtii on anaerobic digestion yield and on its anaerobic co-digestion with a carbon-rich substrate Fernandez-Rodriguez MJ, de la Lama-Calvente D, Jimenez-Rodriguez A, Borja R, Rincon-Llorente B Process Safety and Environmental Protection, 128, 167, 2019 |
3 |
Combined effect of ozone and ultrasound on disruption of microalgal cells Keris-Sen UD, Sen U, Gurol MD Separation Science and Technology, 54(11), 1853, 2019 |
4 |
Microalgal cell disruption via extrusion for the production of intracellular valuables Wang M, Cheng H, Chen SB, Wen SM, Wu X, Zhang DM, Yuan QP, Cong W Energy, 142, 339, 2018 |
5 |
Cell disruption and lipid extraction for microalgal biorefineries: A review Lee SY, Cho JM, Chang YK, Oh YK Bioresource Technology, 244, 1317, 2017 |
6 |
Influence of nitrogen depletion in the growth of N. oleoabundans on the release of cellular components after beadmilling Emre G, Els D, Michel E, Kathy E, Rene W Bioresource Technology, 214, 89, 2016 |
7 |
Simultaneous treatment (cell disruption and lipid extraction) of wet microalgae using hydrodynamic cavitation for enhancing the lipid yield Lee I, Han JI Bioresource Technology, 186, 246, 2015 |
8 |
Hydrothermal-acid treatment for effectual extraction of eicosapentaenoic acid (EPA)-abundant lipids from Nannochloropsis salina Lee I, Han JI Bioresource Technology, 191, 1, 2015 |
9 |
Physicochemical characterization of wet microalgal cells disrupted with instant catapult steam explosion for lipid extraction Cheng J, Huang R, Li T, Zhou JH, Cen KF Bioresource Technology, 191, 66, 2015 |
10 |
Concurrent production of biodiesel and chemicals through wet in situ transesterification of microalgae Im H, Kim B, Lee JW Bioresource Technology, 193, 386, 2015 |