1 |
CONVERGENCE ANALYSIS AND ADAPTIVE ORDER SELECTION FOR THE POLYNOMIAL CHAOS APPROACH TO DIRECT OPTIMAL CONTROL UNDER UNCERTAINTIES Frison L, Kirches C SIAM Journal on Control and Optimization, 59(1), 509, 2021 |
2 |
Artificial Neural Networks for dynamic optimization of stochastic multiscale systems subject to uncertainty Kimaev G, Ricardez-Sandoval LA Chemical Engineering Research & Design, 161, 11, 2020 |
3 |
Intermittent sensor fault detection for stochastic LTV systems with parameter uncertainty and limited resolution Zhang JF, Christofides PD, He X, Albalawi F, Zhao YH, Zhou DH International Journal of Control, 93(4), 788, 2020 |
4 |
Parameter uncertainty quantification for a four-equation transition model using a data assimilation approach Yang MC, Xiao ZX Renewable Energy, 158, 215, 2020 |
5 |
Efficient Direct-Model Predictive Control With Discrete-Time Integral Action for PMSGs Abdelrahem M, Hackl CM, Kennel R, Rodriguez J IEEE Transactions on Energy Conversion, 34(2), 1063, 2019 |
6 |
Consensus tracking control with transient performance improvement for a group of unmanned aerial vehicles subject to faults and parameter uncertainty Wang QS, Huang D, Duan ZS, Wang JY International Journal of Control, 92(4), 796, 2019 |
7 |
PARAMETER UNCERTAINTY IN THE KALMAN-BUCY FILTER Allan AL, Cohen SN SIAM Journal on Control and Optimization, 57(3), 1646, 2019 |
8 |
Robust dynamic optimization of batch processes under parametric uncertainty: Utilizing approaches from semi-infinite programs Puschke J, Djelassi H, Kleinekorte J, Hannemann-Tamas R, Mitsos A Computers & Chemical Engineering, 116, 253, 2018 |
9 |
Robust feasible control based on multi-stage eNMPC considering worst-case scenarios Puschke J, Mitsos A Journal of Process Control, 69, 8, 2018 |
10 |
Uncertainty quantification of a newly optimized methanol and formaldehyde combustion mechanism Olm C, Varga T, Valko E, Curran HJ, Turanyi T Combustion and Flame, 186, 45, 2017 |