검색결과 : 19건
No. | Article |
---|---|
1 |
Efficient Learning for Selecting Important Nodes in Random Network Li HD, Xu XY, Peng YJ, Chen CH IEEE Transactions on Automatic Control, 66(3), 1321, 2021 |
2 |
Efficient Simulation Budget Allocation With Bound Information Li HD, Xu XY, Zhao YP IEEE Transactions on Automatic Control, 65(1), 207, 2020 |
3 |
Stochastic Control Framework for Determining Feasible Alternatives in Sampling Allocation Peng YJ, Song J, Xu J, Chong EKP IEEE Transactions on Automatic Control, 65(6), 2647, 2020 |
4 |
An efficient simulation procedure for ranking the top simulated designs in the presence of stochastic constraints Xiao H, Chen H, Lee LH Automatica, 103, 106, 2019 |
5 |
Efficient simulation budget allocation for subset selection using regression metamodels Gao F, Shi ZS, Gao SY, Xiao H Automatica, 106, 192, 2019 |
6 |
Efficient Simulation Sampling Allocation Using Multifidelity Models Peng YJ, Xu J, Lee LH, Hu JQ, Chen CH IEEE Transactions on Automatic Control, 64(8), 3156, 2019 |
7 |
Ranking and Selection as Stochastic Control Peng YJ, Chong EKP, Chen CH, Fu MC IEEE Transactions on Automatic Control, 63(8), 2359, 2018 |
8 |
Optimal Computing Budget Allocation to Select the Nondominated Systems-A Large Deviations Perspective Li JX, Liu WZ, Pedrielli G, Lee LH, Chew EP IEEE Transactions on Automatic Control, 63(9), 2913, 2018 |
9 |
Gradient-Based Myopic Allocation Policy: An Efficient Sampling Procedure in a Low-Confidence Scenario Peng YJ, Chen CH, Fu MC, Hu JQ IEEE Transactions on Automatic Control, 63(9), 3091, 2018 |
10 |
Simulation Budget Allocation for Selecting the Top-m Designs With Input Uncertainty Xiao H, Gao SY IEEE Transactions on Automatic Control, 63(9), 3127, 2018 |